Mail Gobbler 9000

Team 31

Brendan Truong Luan Vo Adam Cytrynowski Jackie Chan

Problem Statement

UMassAmherst

Ongoing Pandemic (1+ years)

- 1. Package Security
- 2. Closing of retail stores
- 3. Transition to online shopping

UMassAmherst

System Specs

Mail Gobbler 9000 Specifications

- I. Barcode authentication functionality
 - A. barcode scanner and wi-fi communication with AWS backend
- II. Lock/unlocking mechanisms
 - A. unlock request from MG9K mobile app
 - B. correctly identified barcode scan
- III. Fully functional mobile application
 - A. unlock request,
 - B. system logs
 - C. reliable communication with backend
- IV. Ergonomic features
 - A. rechargeable batteries with long life span
 - B. wireless setup
 - C. physical backdoor
 - D. sensibility (system timings, security measures, size)

System Spec: Performance

Performance	Specification	Value	
	Wake-up Response	<1 sec.	
	Authentication and Unlocking	<5 sec.	
	Grace Period	2 Min. Grace Period for Delivery.	
	Extended Battery Life	12V, est. 90 days.	
	Round Clock Operation	LED Allows for Night Time Illumination.	

System Spec: Security

Security	Specification	Value	
	Data Security	AWS Cognito User Sign Up with Limited Privileges. Data Storage in AWS DynamoDB	
		Secured with Limited Write Privileges.	
	Hardware	Hidden Circuitry Inside the Dropbox.	

System Spec: Convenience

Convenience	Specification	Value	
	Mobile App	Stable Mobile App with Full Functionality.	
	Unlocking Alternatives	Remote Unlocking via App and Physical Backdoor.	
	Envelope Compartment	Compartment for Envelopes with Arrival Notifications.	
	Wireless Set Up	No External Wires or Connections Outside of Box.	
	Dimensions	24" Height x 24" Width x 15.4" Length.	

Images of Final Prototype

UMassAmherst

University of Massachusetts Amherst | 7

System Overview

- 1. The mailbox can be opened in 2 ways:
 - successful barcode scanned from delivery personnel.
 - user issued an unlock request via application
- 2. On a successful unlock, box will stay on for 2 minutes before turning off.
- 3. Mailbox communicate with AWS database wirelessly.
- 4. User app allows user to set up mailbox wifi manually.
- 5. Remains locked if the presented barcode does not exist.

UMassAmherst

Functionalities Overview

Hardware & Software

Hardware Modules

- □ ESP-WROOM-02 (WiFi Module)
- □ Microcontroller (ATMega328P)
- □ Barcode Reader (PS/2)
- Solenoid
- □ Rechargeable Battery (12-Volt 7AH)
- Miscellaneous: LED, Capacitors, Diodes, Resistors, and Inductors

Hardware Programming

Atmel Studio

PCB Modules

Altium PCB Designer Tool

Backend Modules

Amazon Web Services (AWS)

- □ IoT Core
- Lambda
- □ AppSynch
- DynamoDB
- Cognito
- SNS

Frontend Modules

- □ xCode (Swift)
- Google Drawing
- Github

Website Modules

- □ HTML/CSS
- Github
 - Pages

System Block Diagram

UMassAmherst

University of Massachusetts Amherst | 10

Software Diagram

University of Massachusetts Amherst | 11

Hardware Diagram

Battery Decision

UMassAmherst

9V Cell Rechargeable Batteries 200mAH Ni-MH 80% capacity for 24 months

Cycle expectancy for 9V: ~23 hours - 36 hours

12-Volt Rechargeable Battery 7AH Sealed Lead Acid (SLA) "Can be used in enclosed/indoor environments without leak and maintenance"

Cycle expectancy for 12V: ~1460 hours - 2190 hours ~ 2 month - 3 months Dimensions: 5.94 inch x 2.56 inch x 3.94 inch (Cross section ~ small phone)

PCB Schematic

Red (Major):

- U1: 3.3 V Regulator
- U2: ATMega328P uC
- U3: ESP-WROOM-02

Blue (Secondary):

- D1: Solenoid
- D2: Switch
- D3: Scanner
- D4: LED indicator

Gold:

• Z1: Headers

PCB Board Layout

Red (major):

- U1: 3.3 V Regulator
- U2: ATMega328P
- U3: ESP-WROOM-02

Gold (connectors):

• Headers (6x)

[↑]Option 2. Placing at the edge with the antenna outside of the host board

Photos of PCB

Atmel Studio vs Arduino IDE

UMassAmherst

External Tools	?	<				
		New Project				? ×
Me <u>n</u> u contents:		▶ Recent		Sort by: Default		Search Installed Templates (Ctrl+E)
Arduino UNO	<u>A</u> dd	 Installed 		AVR XC8 C Application Project	C/C++	Type: C/C++
	Delete	C/C++ Assembler		AVR XC8 C Library Project	C/C++	Creates an Atmel Studio project from Arduino sketch file. Creates two projects
		Microchip Stud	lio Solution	Convert AVR GCC to XC8 Project	C/C++	(Sketch, ArduinoCore). The Sketch project contains the sketch file and the
					5,5,1	ArduinoCore project contains all the core, variant and any library files.
	Move Up			GCC C ASF Board Project	(/(++	
				GCC C Executable Project	C/C++	
	Move Doy	1		GCC C Static Library Project	C/C++	
				GCC C++ Executable Project	C/C++	
<u>litte:</u>	Arduino UNO			GCC C++ Static Library Project	C/C++	
<u>C</u> ommand:	C:\Program Files (x86)\Arduino\hardware\tc			Create project from Arduino sketch	C/C++	
A <u>rg</u> uments:	-C''C:\Program Files (x86)\arduino\hardware					
Initial directory:						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Use Output window	Prompt for arguments	<u>N</u> ame:	ArduinoSketch3			
Treat output as Unic	ode 🛛 🖓 Close on evit	Location:	c:\users\luan\Do	ocuments\Atmel Studio\7.0	•	<u>B</u> rowse
		Solution hame:	ArduinoSketch3			Create girectory for solution
	OK Cancel Apply					
		Cre	ate new A	Atmel Studio project from A	rduino. Code	can be written in

both C and C++

Setting up Arduino environment as external tools

University of Massachusetts Amherst | 17

FPR Deliverables

Promised Deliverables for FPR:

- I. Functional integrated system situated within a physical dropbox
 - A. cardboard dropbox to avoid costly woodwork
 - B. conveys operational concept of the system
- II. Fully populated and functional PCB
- III. Robust prototype that avoids solderless breadboard
- IV. Prototype compliant to system specifications

Integration Failures

Failures:

1. Barcode Scanner

The biggest hurdle was not knowing what our output was, so when we would scan a value, we had no way to see what data was being transmitted. Having an LCD display would've helped in this process. This was figured out too late in design.

2. Serial Communication

The only communication we have between the ATMega328P and the ESP-WROOM-02 is setting pins high and low. We were unable to have the UART communication occur. There were issues with our frequency and baud rate. This could be due to a lack of external clock, which was found too late in the design process.

What We Learned

UMassAmherst

Improvements:

- 1. More planning could have gone into the operation modes of ESP-WROOM-02 during CDR.
- 2. Should have put more thoughts into future stages.
- 3. Avoids tunnel vision.

Sample PCB circuit for WROOM configuration

Integration Successes and System Upgrades

UMassAmherst

Success:

- 1. Mobile application
- 2. Functional backend
 - a. Unlock request propagates to hardware
- 3. Populated PCB that avoids solderless breadboards (WIP)
- 4. System incorporated into physical mailbox

Upgrades:

1. Wi-Fi setup manager

- I. Introduction of mobile app: MG9K
- II. Walkthrough of backend and functionalities
- III. Physical box demo

MG9K WiFi Setup

UMassAmherst

University of Massachusetts Amherst | 23

MG9K WiFi Setup

Demo: Back Up Recording

UMassAmherst

*NO BREADBOARD IN FINAL PROTOTYPE

Demo: Back Up Recording

Changes since CDR

UMassAmherst

<u>Luan</u>

PCB Soldering

- Solder SMT components
- Header Integration
- Verification and testing PCB

Atmel Studio

> Program ATMega328P

<u>Adam</u>

Integrate ATMega328P with

ESP-WROOM-02 in final prototype

Physical Hardware

- > Physical Box Remodel
- Circuitry Integration into Box

<u>Brendan</u>

ESP-WROOM-02

- Soldered Pins
- > Programmed ESP
- ➤ Wi-Fi Set Up process

Collaborative Testing

<u>Jackie</u>

Improved PCB

- > Added Headers
- Modified ESP Placement
- > Reroute Traces

Mobile App Testing

- Test all Functionalities on iOS Phone
- Small Changes
 - Hide keyboard (on-screen keyboard)
 - Remove Redundant Package Log

Budget Expenditure

Budget	Current Total Cost w	Remaining Budget			
\$500.00	\$353.33	\$146.67	2		
Circuitry Costs	Link	Status	Unit Price	Quantity	Total Cost w/Shipping
Rechargeable Lithium Battery	https://www.homedepot.com/p/M	Own	\$17.50	2	\$40.99
Battery Charger	https://www.amazon.com/Peleus	Own	\$10.99	1	\$10.99
ESP- WROOM - 02	https://www.digikey.com/en/prod	Own	\$2.70	10	\$51.66
USB Host BOB	https://www.digikey.com/product-	Own	\$4.50	1	\$4.50
Scanner	https://www.adafruit.com/product	Own	\$69.95	2	\$151.30
2-Layer PCB [80x62 mm]	jlcpcb.com	Own	\$0.40	5	\$19.80
CP2102 Module Usb to TTL	https://www.amazon.com/IZOKE	Own	\$7.89	6	\$23.67
Breadboard	https://www.amazon.com/DEYUI	Own	\$6.99	3	\$6.99
0022112092 Molex [9 Pin header]	https://www.digikey.com/en/products/de	Own	\$1.41	2	\$2.82
826926-2 [2 pin header]	https://www.digikey.com/en/products/de	Own	\$0.26	4	\$1.04
640456-5 [5 pin header]	https://www.digikey.com/en/products/de	Own	\$0.33	2	\$0.66
22232071 [7 pin header]	https://www.digikey.com/en/products/de	Own	\$0.44	2	\$0.88
90147-1314 [14 pin header]	https://www.mouser.com/ProductDetail	Own	\$3.30	2	\$6.60
1-826629-3 [13 Pin header]	https://www.mouser.com/ProductDetail	Own	\$1.67	2	\$3.34
Box Construction Costs	Link	Status	Unit Price	Quantity	Total Cost w/Shipping
12 oz. #P140-7 No More Drama G	https://www.homedepot.com/p/B	Own	\$5.98	1	\$11.97
Construction Box Materials	From Shira	Own			
Gorilla Dual Temp Mini Hot Glue Gun Kit	https://www.amazon.com/Gorilla-84015	Own	\$12.49	1	\$12.49
Masking Tape	https://www.amazon.com/Scotch-Office	Own	\$3.63	1	\$3.63

Thank you!

UMassAmherst

Concluding Remarks:

Thank you for a wonderful Senior Design Project:

- ≻ Time
- Constructive Feedback
- Empathy and Patience (regarding virtual demo)

Questions?

University of Massachusetts Amherst BE REVOLUTIONARY

state the set

UMassAmherst

ESP-WROOM-02

Pins Needed	Connection To		
3.3V Power Supply (VDD)	3.3V Power		
EN - Chip Enable Pin	Pulled up to VCC (3.3V Power)		
IO15 - UARTO	GND		
IO0 - UART Download	GND		
GND	GND		
TXD	RXD of USB Interface		
RXD	TXD Of USB Interface		